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1 Motivation

Suppose I want to transmit a yes/no message in binary. I could send one bit, where 1 represents yes and

0 represents no. This would work if noise wasn’t a thing. Due to potential interference when transmitting

messages, there’s a chance that my 1 may turn into a 0 or my 0 may turn into a 1. We call this a bit flip.

Perhaps I could try sending two bits, where 11 represents yes and 00 represents no. Now if there’s a bit

flip, my message becomes 10 or 01. If the person I’m sending the mssage to knows that I’m only sending

11 or 00, then recieving a 10 or 01 automatically indicates a transmission error. However, it isn’t possible

to fix this error, so the code I sent is an error-detecting code. To visualize why such a code isn’t fixable,

consider the following graph:
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The distance between two codes is calledHamming distance and is calculated by counting the minimum

number of bit flips needed to go from one message to another. We will refer to Hamming distance as just

distance for convenience. On the graph above, each point represents a possible message, and each line

connects messages with distance 1. If we were to draw a circle that encompases all messages at most a

distance one away from 00 and another encompasing all messages at most a distance one away from 11, we

get overlapping circles.
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Due to this overlap, we cannot trace 01 and 10 back to its original message. However, let’s add a third

bit, where 111 represents yes and 000 represents no. If we draw a graph of all possible messages, and draw
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elipses that encompas messages at most one distance away from 111 and 000 respectively, we get the graph

below.
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Because these elipses don’t overlap, we can fix the case where one bit flip occures during transmission. If

my reciever gets 010, the message can be turned back to 000 and my original message would be successfully

recieved. This is an error-correcting code. To be able to fix more than one bit flip, we need more

complicated codes. Another way to see this is that if two of the numbers in my code is a 0, then the third

should also be a 0. If two of them are 1, then the remaining one should be 1. In this sense, we’re ok with having

some overlap because all codes other than 000 or 111 have both 0 and 1 in them. We just don’t want too

much overlap. Often we want to send a message more complicated than a simple yes/no. To build an error-

correcting code for these scenarios, the idea remains the same: we want to construct sets that don’t overlap

much.

2 Defining a Steiner System

Consider the numbers t = 2, k = 3, n = 7. Suppose we have a set Ω with n = 7 elements. WLOG, let

Ω = {1, 2, 3, 4, 5, 6, 7}

Suppose we take x, y ∈ Ω s.t. x ̸= y. We can certainly find B ⊂ Ω of size k = 3 that contains both x

and y (just take B = {x, y, z} for any z ∈ Ω \ {x, y}). But what if we wanted a collection of subsets of Ω,

each with size 3, s.t. any t = 2 numbers we choose from Ω is contained in exactly one of the subsets in our

collection? Is this even possible? Let’s give it a shot.

To begin our construction, consider the pair of numbers 1, 2 ∈ Ω. We know these numbers must be

contained in some subset of size 3, so let’s just use B1 = {1, 2, 3} ⊂ Ω. To keep track of what we’re building,

let’s list elements of Ω on the left-most column of a table, and gradually fill in our blocks using other columns.

Since we just constructed B1, we can list its elements as follows:
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Ω B1 B2 B3 B4 B5 B6 B7

1 1

2 2

3 3

4

5

6

7

The pair 1, 3 also exists in B1, so we can move on to 1, 4. The block B2 that contains {1, 4} cannot also

contain 2 or 3 beacuse then the pair 1, 2 or 1, 3 would also be in B2. Thus, let’s let B2 = {1, 4, 5}.

Ω B1 B2 B3 B4 B5 B6 B7

1 1 1

2 2

3 3

4 4

5 5

6

7

The pair 1, 5 also exists in B2, so let’s consider 1, 6. By similar reasoning above, this time we’re forced

to have B3 = {1, 6, 7}.

Ω B1 B2 B3 B4 B5 B6 B7

1 1 1 1

2 2

3 3

4 4

5 5

6 6

7 7

Since all pairs involving the number 1 have now been considered, any additional block in cannot contain

1 because then we’d have a pair of numbers that are contained in more than one block. The pair 2, 3 is

already contained in B1, so consider the pair 2, 4. B4 cannot contain 3 or 5 because then we’d get a pair of

numbers contained in multiple blocks, so let’s let B4 = {2, 4, 6}.

Ω B1 B2 B3 B4 B5 B6 B7

1 1 1 1

2 2 2

3 3

4 4 4

5 5

6 6 6

7 7

The pair 2, 5 is yet to be in a block. To avoid letting pairs exist in multiple blocks, we’re forced to have

B5 = {2, 5, 7}.
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Ω B1 B2 B3 B4 B5 B6 B7

1 1 1 1

2 2 2 2

3 3

4 4 4

5 5 5

6 6 6

7 7 7

We can follow similar reasoning, first considering the pair 3, 4 then 3, 5 to get B6 = {3, 4, 7} and B7 =

{3, 5, 6}.

Ω B1 B2 B3 B4 B5 B6 B7

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

So now we have a collection B = {B1, . . . , B7} s.t. ∀x, y ∈ Ω ∃!Bi ∈ B s.t. {x, y} ⊂ Bi. This leads us to

the definition of a Steiner system:

A Steiner system S(t, k, n) is a set Ω of size n and a collection B of blocks B where each block is of

size k s.t. any t elements of Ω is contained in a unique B ∈ B, where t < k < n.

Why require strict inequalities? If t = k, then we’d require every k elements of Ω to be contained in a

unique block of size k. The corresponding Steiner system would be the set of all subsets of size k, which

isn’t that interesting. Being able to easily find the Steiner system in this case is boring, so we don’t allow

t = k. Meanwhile, if k = n, then that’s the same as requiring a collection of blocks where each block has the

same size as Ω. The corresponding Steiner system would be Ω itself. This is also boring (more boring than

the t = k case I’d say), so we don’t allow k = n.

3 Existence of Steiner Systems

It is important to note that Steiner systems don’t always exist. Consider the case where t = 1, k = 2, n =

3. Here,

Ω = {1, 2, 3}

The number 1 must be conatined in a block of size 2, so let’s let B1 = {1, 2}. The number 3 must also

be in a block of size 2. But any B2 must contain either 1 or 2, both of which are already in B1. Hence we’re

forced to have a number present in both blocks, so S(1, 2, 3) doesn’t exist.

Given this result, it may be of interest to know some theorems concerning existence of Steiner systems.

Below are a few results:

Theorem 1. If S(t, k, n) exists, then S(t− 1, k − 1, n− 1) exists
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Proof : Choose any element x ∈ Ω. Remove all blocks in B that don’t contain x. The remaining blocks

satisfy the following: for any t elements of Ω, one of which is x, there exists a unique block B ∈ B that

contains those t elements. Now remove x from Ω and all blocks in B. Ω now contains n− 1 elements, each

block has size k − 1, and every t − 1 elements in Ω is contained in a unique B ∈ B, so we have the Steiner

system S(t− 1, k − 1, n− 1).

□

This theorem is useful for proving that certain Steiner systems don’t exist. For instance, if S(1000, 1001, 1002)

exists, then applying theorem 1 999 times tells us that S(1, 2, 3) should exist, but we showed earlier that it

doesn’t, so S(1000, 1001, 1002) doesn’t exist. It can also be useful for proving existence of certain Steiner

systems, but that’s harder. If we want to show that S(t, k, n) exists, then it is also valid to show that

S(t+ i, k + i, n+ i) exists for some i because then we can apply theorem 1 i times.

Theorem 2. If S(t, k, n) exists, then
(
k
t

)
divides

(
n
t

)
.

Proof :
(
k
t

)
is the number of t-subsets (subsets of size t) in a block. Let b be the total number of blocks.

Then the total number of distinct t-subsets in the collection of blocks is b
(
k
t

)
. Since each block is itself a

subset of Ω, each of these t-subsets exist in Ω. But Steiner systems require each t-element subset to appear

exactly once within the collection of blocks. Thus

b

(
k

t

)
=

(
n

t

)
so (

n
t

)(
k
t

) = b ∈ Z

□

The contrapositive of theorem 2 tells us that if
(
k
t

)
doesn’t divide

(
n
t

)
, then we shouldn’t bother looking

for S(t, k, n) because it doesn’t exist.

In fact, we can strengthen our knowledge of which Steiner systems exist or don’t exist by combining

theorems 1 and 2.

Remark. If S(t, k, n) exists then
(
k−i
t−i

)
divides

(
n−i
t−i

)
for all i = 0, 1, . . . , t− 1.

Proof : By continued application of theorem 1, we know that S(t−i, k−i, n−i) exists for all i = 0, 1, . . . , t−1.

Apply theorem 2 to each of these Steiner systems to get the desired result.

□

Now what about a theorem that makes it easy to prove existence? There is a result I find quite interest-

ing. A Steiner triple system, abbreviated STS, is where we fix t = 2 and k = 3. The example S(2, 3, 7)

that we constructed in section 2 is an example of a STS.

Kirkman’s Existence Theorem. A STS exists iff n ≡ 1 (mod 6) or n ≡ 3 (mod 6).

Proof : See Steiner and Kirkman Triple Systems

□
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4 Finding blocks containing a given t-subset

Given the existence of certain Steiner systems, we might want to identify the unique block that contains

some t-subset. Why is this question interesting? From the pure math perspective, the uniqueness of blocks

that contain any given t-subset is the key property of Steiner systems, so understanding the blocks lets

us understand Steiner systems. From the applied math perspective, uniqueness of blocks is kinda like an

error-correcting code. If a Steiner system is in some way your code, then if you recieve a set of messages you

want to be able to quickly correct it. For example, if someone is sending you a message obeying S(2, 3, 7),

then if you get the coded message 4, 7 you want to be able to fix it to the closest valid code word (which

is 3). During our construction of S(2, 3, 7) at the beginning of section 2, we started with the pair 1, 2 and

made B1 = {1, 2, 3}. Other blocks were made by considering different pairs of numbers, and everything was

arranged in a table. Looking through a table isn’t bad for “small” Steiner systems, but they can get quite

large so it is of interest to look at other visualizations. It turns out we can arrange the blocks of S(2, 3, 7)

into what’s called a Fano plane.

56 3

1

4

7 2

Given a pair of numbers, we can use this plane to find the other number in the unique block containing

our originally chosen numbers. For example, the pair 4, 7 forms a line on the plane, so we trace that line

to see that 3 is the other number. Thus the pair 4, 7 is contained in the block {3, 4, 7}. The numbers 3, 6

also form a line on the Fano plane, which we trace to see that 5 is the missing number. So the pair 3, 6 is

contained in the block {3, 5, 6}. Meanwhile, the pair 2, 5 is on a circle. We trace the circle to conclude that

the pair 2, 5 is contained in the block {2, 5, 7}.
In the case of S(5, 8, 24), there’s a diagram called the Miracle Octad Generator, abbreviated MOG,

that serves a similar purpose as the Fano plane: given any 5 elements, the diagram lets you identify the

remaining 3 elements in the block that contains those 5 elements. You may read more about it here: A new

combinatorial approach to M24. The MOG is figure 4 of that paper.

5 Uniqueness of Steiner Systems

At the beginning of section 2 when we made B1, we could have easily picked a different element (though

this would influence valid choices for other Bi). We didn’t have to have B1 = {1, 2, 3}. For example, an

equally valid S(2, 3, 7) is shown below.
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Ω B′
1 B′

2 B′
3 B′

4 B′
5 B′

6 B′
7

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

Recall that in section 2 we derived the following table:

Ω B1 B2 B3 B4 B5 B6 B7

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

Is the Steiner system B′ = {B′
1, . . . , B

′
7} different from B = {B1, . . . , B7}? The elements themselves are

different, but since the elements are arbitrary maybe it’s possible to relabel them so that the two tabular

visualizations of S(2, 3, 7) look identical. If such relabelling is possible, we call these two Steiner systems

isomorphic. There are two actions we’re allowed to perform on these tables. Since the order in which

blocks appear in B is arbitrary, we can permute their order, which corresponds to permuting columns in the

table. Since relabelling of elements must result in all elements being represented, we are allowed to permute

rows of the table. So, if we can permute columns and rows of the table representing B′ such that the result

looks like the table representing B, then we can say that our two Steiner systems above are isomorphic. In

this case, such permutations are possible (proof left to the reader as an exercise).

However, two representations of a Steiner system need not be isomorphic. Consider S(2, 3, 13). We can

have the following collection of blocks:

Ω B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 6 6 6 6 6 6

7 7 7 7 7 7 7

8 8 8 8 8 8 8

9 9 9 9 9 9 9

10 10 10 10 10 10 10

11 11 11 11 11 11 11

12 12 12 12 12 12 12

13 13 13 13 13 13 13
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Ω B′
1 B′

2 B′
3 B′

4 B′
5 B′

6 B′
7 B′

8 B′
9 B′

10 B′
11 B′

12 B′
13 B′

14 B′
15 B′

16 B′
17 B′

18 B′
19 B′

20 B′
21 B′

22 B′
23 B′

24 B′
25 B′

26

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 6 6 6 6 6 6

7 7 7 7 7 7 7

8 8 8 8 8 8 8

9 9 9 9 9 9 9

10 10 10 10 10 10 10

11 11 11 11 11 11 11

12 12 12 12 12 12 12

13 13 13 13 13 13 13

Within the first row, the red cells indicate columns that differ between the two tables, while green indicates

columns that are identical. We cannot permute the columns nor rows to fix the red columns without messing

up columns that are already the same.

So we now know we can have Steiner systems with the same t, k, n values that are and aren’t isomorphic.

What about our Fano plane? Could we have placed numbers differently so that blocks are conserved?

Suppose we’re working with the Steiner system S(2, 3, 7) as constructed from section 2, so B is fixed. Recall

that the Fano plane I showed earlier in section 4 is as follows:

56 3

1

4

7 2

Pick any spot on the Fano plane. There are 7 choices of numbers that can go in the chosen spot. Pick

any remaining spot on the Fano plane. There are 6 choices of numbers that can go in the chosen spot. But

now there must be a block containing the two numbers, so the location of a third number is fixed. That

number goes in the unique spot that shows up as a block on the Fano plane. For example, if we placed 7 at

the top and 5 in the middle, then 2 must go at the bottom niddle.

2

7

5

Now pick an unoccupied spot. There are 4 numbers left that can go there. Placing that number on

the Fano plane ends up completely defining where everything else must go (try it for yourself), so we’ve

exhausted all possible permutations. For instance, if we placed 1 on the bottom right, we’re forced to have
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23 1

7

5

4 6

The total number of block-preserving permutations is therefore

7× 6× 4 = 168

6 Connections to Other Fields of Mathematics

I mention a few here. There’s probably more connections I’m unaware of.

6.1 Coding Theory

The Extended Binary Golay Code is a code that encodes 12 bits of data in 24-bit chunks in a way that

all valid code words are a distance 8 away. This means that it enables the reciever to accurately correct up

to 3 bit flips per chunk of code. The weight of a code word is the number of 1 it has, so the code word

110100010110110101011000

has weight 12. It can be shown that the weight of valid code words for the extended binary golay code is

either 0, 8, 12, 16, or 24. In particular, there are 759 code words of weight 8. But notice that(
24
5

)(
8
5

) = 759

so due to theorem 2 we might think that S(5, 8, 24) is somehow linked here. It turns out that code words of

weight 8 in the extended binary golay code forms a steiner system S(5, 8, 24). This code was used on Voyager

1 to send pictures of Jupiter and Saturn during its flyby of those planets. Error correction was extremely

important because Voyager 1 has basically no memory (only 70 kilobytes), so once it sends the image, that

data is gone. If the image recieved on Earth can’t be fixed, we can’t ask Voyager 1 to send it again. See The

Hidden Geometry of Error-Free Communication and Constructions of the Golay Codes: A Survey for more

detail.

6.2 Group Theory

The classification of finite simple groups is one of the biggest achievements in algebra and revealed four

infinite classes of groups that all except 26 groups can be categorized into. Among the 26 sporadic groups, 5

of them are known as Mathieu groups. It turns out that the generators of the Mathieu groups can be used

to construct Steiner systems. In particular, the generators of M24 can construct the blocks of S(5, 8, 24).

See Generating the Mathieu groups and associated Steiner systems for more detail.
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6.3 Sphere Packing

Sphere packing is a problem where you have a bunch of spheres and you want to shove as many of them

into a given space as possible. We’re usually interested in the density of spheres, meaning the proportion

of volume it takes up relative to its container. The probablem can be formally stated as follows: How can

n-spheres be positioned in Rn such that none are overlapping (though they may be tangent) and the volume

of Rn covered by the spheres is maximal? This question is an active area of research, with many unanswered

questions. Interestingly, the blocks of S(5, 8, 24) can be used to form Leech’s lattice, which can then be

used to create the densest known sphere packing in 24 dimensions. An Introduction to S(5,8,24) provides

more detail on this and Coding theory and Group theory.

6.4 Design Theory

A statement I’ve heard a few times is ”for any concept you learn in math, there’s always a general-

ization of it.” This statement definitely holds true for Steiner systems. Steiner systems are a special case

of Balanced Incomplete Block Designs, abbreviated BBID, which are studied heavily in design theory.

Sometimes in life science research it isn’t possible to perfectly control for every confounding variable. For

instance, maybe you wanna test 3 brands of eye drops, but since each person only has 2 eyes, you can only

test 2 eye drops per person (one in each eye). If you only want 1 datapoint per brand, then that’s the same

as trying to construct S(1, 2, 3), which we know from section 2 doesn’t exist. However, what if we relaxed

the key condition of a Steiner system? Instead of each t-subset being contained in exactly 1 block, what

if we required each t-subset to be contained in exactly r blocks? In our eyedrop example, we can get 2

datapoints per brand by giving one participant brands A and B, participant number 2 gets brands C and

A, then participant number 3 gets brands B and C. BBIDs also have theorems regarding their existence,

uniqueness, etc. See Balanced Incomplete Block Designs for more detail.
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